# Russell Avdek

I'm a mathematician who studies algebraic and topological aspects of symplectic manifolds and their friends. Currently I'm working at Laboratoire de Mathématiques d'Orsay as a MathInGreaterParis fellow (101034255). Previously I was a researcher at Uppsala University and before that I was a software/machine learning engineer. Here is my CV and my GitHub.

Reach me via my personal email at first_name.last_name@gmail.com (corrected in the obvious fashion).

# Research articles

A stabilization operation is defined for transverse links (ie. codimension 2 contact submanifolds) in contact manifolds of dimension at least 5. The definition is such that (1) a given contact manifold is overtwisted iff its standard transverse unknot is stabilized and (2) transverse stabilization preserves the formal contact isotopy class and intrinsic contact structure of a link. We prove that many transverse links are non-simple (and an update will contain generalizations).

We compute the contact homologies of neighborhoods of convex hypersurfaces of any dimension. The result is expressed in terms of homotopy classes of augmentations of the dividing set, or alternatively bilinearized homology theories which we define for free, commutative DGAs over the rationals. See the MCM slides below for an overview with lots of background. Some applications (to appear in an upcoming article) are reviewed here.

We define a generalization of the Chekanov-Eliashberg algebra, CE, which we call the planar diagram algebra, PDA. It is a non-commutative differential graded algebra with a special filtration. The PDA differential counts holomorphic disks with multiple positive punctures using a combinatorial framework inspired by string topology. Computational software is available here. For a quick overview, see these slides.

### How do you count index 1 J-curves on the Lagrangian cylinder over a Legendrian link in R3 when the domain is non-simply connected? This is an obstruction bundle problem which does not always admit a combinatorial solution. We show that such curves can be "perturbed away" using a Legendrian isotopy, implying that any (full) SFT invariant of Legendrian links can be computed using only combinatorial disks.

We develop tools for studying Reeb dynamics on contact 3-manifolds determined by surgery diagrams and for counting holomorphic planes in surgery cobordisms. These tools are used to provide the first examples of closed, tight contact manifolds with vanishing contact homology. For an overview focused on applications, see the slides below.

We describe factorizations of fibered Dehn twists along the boundary of Milnor fibers of Fermat singularities in terms of Dehn twists along Lagrangian spheres. In low dimensions, these factorizations generalize the classical chain relation.

A symplectic cobordism construction is described which generalizes Weinstein handle attachment. Applications include proofs of the existence of "fillability" and "non-vanishing contact homology" monoids in the symplectomorphism groups of Liouville domains as well as proofs of the symplectic non-triviality of squares of Dehn twists on cotangent bundles of 2- and 6-dimensional spheres (which are smoothly trivial).

Algorithms are described for switching between open book and contact surgery descriptions of a given contact 3-manifold. We use these algorithms to show that every contact 3-manifold can be described by contact surgery along a Legendrian link in 3-space.

# Notes and software

### Slides supplementing my articles

Minicourse on the Algebraic Giroux criterion (AGC) at the MCM Geometry Summer School

Lecture 1: Background and statement of the AGC

Lecture 2: Algebra and computations using relative Gromov-Witten

Lecture 3: Bao-Honda's definition of (Kuranishi) contact homology

Lecture 4: Sketch of the proof of the AGC

### Computational mathematics

mpci software package. Computations for smooth complete intersections in products of complex projective spaces.

legendrian_links software package. Computes homolomorphic disks invariants of Legendrians in R3.

### Notes from expository lectures

# Recent and upcoming talks

Geometry and topology seminar, University of Southern California, Apr. 22, 2024.

Kuranishi exchange seminar (expository), Sorbonne Université, Apr. 3, 2024.

Geometry and topology seminar (Zoom), University of Iowa, week of Mar. 5, 2024.

Séminaire de Topologie, Géométrie et Algèbre, Université de Nantes, Feb. 29, 2024.

Lyon-Grenoble Symplectic Geometry workshop, Grenoble, Nov. 30-31, 2023.

Symplectix séminaire de topologie symplectique, Paris, Nov. 10 2023 (slides).

Symplectic Zoominar, CRM-Montréal, Princeton/IAS, Tel Aviv, and Paris, Oct. 20, 2023 (slides).

Geometry Summer School, Morningside Center for Mathematics, Sep. 2023.

Geometry Seminar, Université Libre de Brussels, Feb. 2023.

Topology seminar, University of Glasgow, Oct. 2022.

Humboldt-Universität zu Berlin, June 2022.

Geometry & Topology Seminar, Mar. 2022.

Floer homotopy reading seminar, Feb. 2022 (expository).

Geometry & Topology, University of Minnesota, Oct. 2021.

Uppsala-Nantes workshop on Lagrangian cobordism, Oct. 2021.

Advances In Symplectic Topology, Institut Henri Poincaré, May 2021 (video).

Geometry & Topology Seminar, Uppsala University, Mar. 2021.

Topology Seminar, UCLA, Jan. 2021.

Obstruction Bundle Gluing Zoominar, Oct. 2020 (expository, video).

AlgGeomDiffTop Seminar, Rényi Institute, June 2020.

Virtual Geometry & Topology Seminar, Uppsala University, June 2020.